Uncoupling of Ca2+ Transport in Sarcoplasmic Reticulum as a Result of Labeling Lipid Amino Groups and Inhibition of Ca2+-ATPase Activity by Modification

نویسنده

  • Cecilia Vergara
چکیده

Limited labeling of amino groups with fluorescarnine in fragmented sarcoplasmic reticulum vesicles inhibits Ca2+-ATPase activity and Ca2+ transport. Under the labeling conditions used, 80% of the label reacts with phosphatidylethanolamine and 20% with the CaZ+-ATPase polypeptide. This degree of labeling does not result in vesicular disruption or in loss of vesicular proteins and does not increase the membrane permeability to Caz+. Fluorescamine labeling of a purified Ca2+-ATPase devoid of aminophospholipids also inhibits Ca2+-ATPase activity, suggesting that labeling of lysine residues of the enzyme polypeptide is responsible for the inhibition of Ca2+-ATPase activity in sarcoplasmic reticulum. Fluorescamine labeling interferes with phosphoenzyme formation and decomposition in both the native vesicles and the purified enzyme; addition of ATP during labeling, and with less effectiveness ADP or AMP, protects both partial reaction steps. Addition of a nonhydrolyzable ATP analog protects phosphoenzyme formation but not decomposition. The inhibition of Ca2+ transport but not of Ca2+-ATPase occurs in sarcoplasmic reticulum vesicles labeled in the presence of ATP, indicating that the transport reaction is uncoupled from the Ca2+-ATPase reaction. The inhibition of Ca2+ transport but not of Ca2+-ATPase activity is also found in sarcoplasmic reticulum vesicles in which only phosphatidylethanolamine has reacted with fluorescamine. Furthermore, the extent of labeling of phosphatidylethanolamine is correlated with the inhibition of Ca2+ transport rates. The inhibition of Ca2+ transport is a reflection of the inhibition of Ca2+ translocation and is not due to an increase in Ca2+ efflux. We propose that labeling of phosphatidylethanolamine perturbs the lipid environment around the enzyme, producing a specific defect in the Ca2+ translocation reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of chemical modification on the crystallization of Ca2+-ATPase in sarcoplasmic reticulum.

The influence of chemical modification on the morphology of crystalline ATPase aggregates was analyzed in sarcoplasmic reticulum (SR) vesicles. The Ca2+-ATPase forms monomer-type (P1) type crystals in the E1 and dimer-type (P2) crystals in the E2 conformation. The P1 type crystals are induced by Ca2+ or lanthanides; P2 type crystals are observed in Ca2+-free media in the presence of vanadate or...

متن کامل

Inhibitory effect of lidocaine on the sarcoplasmic reticulum Ca2+-dependent atpase from temporalis muscle.

Myotoxic effects of local anesthetics on skeletal musclefibers involve the inhibition ofsarcoplasmic reticulum Ca2+ -dependent ATPase activity and Ca2 transport. Lidocaine is a local anesthetic frequently used to relieve the symptoms of trigeminal neuralgia. The aim of this work was to test the inhibitory and/or stimulatory effect of lidocaine on sarcoplasmic reticulum Ca2+ -dependent ATPase is...

متن کامل

Inhibition Mechanism of the Intracellular Transporter Ca2+-Pump from Sarco-Endoplasmic Reticulum by the Antitumor Agent Dimethyl-Celecoxib

Dimethyl-celecoxib is a celecoxib analog that lacks the capacity as cyclo-oxygenase-2 inhibitor and therefore the life-threatening effects but retains the antineoplastic properties. The action mechanism at the molecular level is unclear. Our in vitro assays using a sarcoplasmic reticulum preparation from rabbit skeletal muscle demonstrate that dimethyl-celecoxib inhibits Ca2+-ATPase activity an...

متن کامل

Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum.

The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/m...

متن کامل

Inhibition of sarcoplasmic reticulum Ca -ATPase by miconazole

Lax, Antonio, Fernando Soler, and Francisco Fernandez-Belda. Inhibition of sarcoplasmic reticulum Ca2 ATPase by miconazole. Am J Physiol Cell Physiol 283: C85–C92, 2002. First published February 20, 2002; 10.1152/ ajpcell.00580.2001.—The inhibition of sarcoplasmic reticulum Ca2 -ATPase activity by miconazole was dependent on the concentration of ATP and membrane protein. Half-maximal inhibition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001